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ABSTRACT: N°-Methyladenosine (m®A) is an abundant
epitranscriptomic modification that plays important roles
in many aspects of RNA metabolism. While m°A is
thought to mainly function by recruiting reader proteins
to specific RNA sites, the modification can also reshape
RNA-protein and RNA—RNA interactions by altering
RNA structure mainly by destabilizing base pairing. Little
is known about how m°A and other epitranscriptomic
modifications might affect the kinetic rates of RNA folding
and other conformational transitions that are also
important for cellular activity. Here, we used NMR R,
relaxation dispersion and chemical exchange saturation
transfer to noninvasively and site-specifically measure
nucleic acid hybridization kinetics. The methodology was
validated on two DNA duplexes and then applied to
examine how a single m°®A alters the hybridization kinetics
in two RNA duplexes. The results show that m°A
minimally impacts the rate constant for duplex dissocia-
tion, changing k. by ~1-fold but significantly slows the
rate of duplex annealing, decreasing k,, by ~7-fold. A
reduction in the annealing rate was observed robustly for
two different sequence contexts at different temperatures,
both in the presence and absence of Mg>". We propose
that rotation of the N®-methyl group from the preferred
syn conformation in the unpaired nucleotide to the
energetically disfavored anti conformation required for
Watson—Crick pairing is responsible for the reduced
annealing rate. The results help explain why in mRNA
m°A slows down tRNA selection and more generally
suggest that m®A may exert cellular functions by reshaping
the kinetics of RNA conformational transitions.

N°-Methyladenosine (m®A) is an abundant reversible epitran-
scriptomic modification found in coding and noncoding
RNAs.'~* It plays important roles in RNA metabolism>™*
and is implicated in a growing number of cellular
processes.”” "> While the modification is thought to primarily
exert its function by recruiting reader proteins to specific RNA
sites, it can also reshape RNA—RNA and RNA-protein
interactions by modulating RNA structure.'°"* A single m°A
destabilizes RNA duplexes by 0.5—1.7 kcal/ mol, > enhancing
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binding to single-stranded RNA (ssRNA) binding proteins.16
m°®A destabilizes A-U base pairs (bps) because hydrogen
bonding requires that the N°-methyl group adopts the

energetically unfavorable anti conformation”"** (Figure 1).
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Figure 1. N®-Methyladenosine (m®A) destabilizes m®A-U pairing and
RNA duplexes. The methyl group has to adopt an anti conformation
to form the Watson—Crick H6---O4 hydrogen bond, but this leads to
unfavorable steric contacts with N7.

The activities of many RNAs also depend on the kinetic
rates of folding, protein-RNA, RNA—RNA, and RNA-li§and
association/dissociation, and conformational transitions.”>™*’
Surprisingly little is known about how m°A and other
epitranscriptomic modifications impact these kinetic properties
of RNA. Compelling evidence for such a kinetic effect comes
from a study showing that in mRNA m°A slows down tRNA
selection during translation.”” Here, we developed an approach
based on NMR spin relaxation dispersion (RD) in the rotating
frame (R;,)**** and Chemical Exchange Saturation Transfer
(CEST)** to site-specifically and noninvasively measure
hybridization kinetics of nucleic acid duplexes and then used
the approach to examine how a single m®A impacts RNA
duplex hybridization kinetics.

The melting and annealing of RNAs occurs in a wide variety
of biochemical reactions.”””> Relative to other methods for
studying hybridization kinetics,**~* the NMR approach does
not require a potentially perturbing label, which could obscure
the impact of a small chemical modification, and kinetics can
be measured at atomic resolution®”*® to enable character-
ization of any intermediates that may form at the modified site.
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We first evaluated the R;, RD methodology on DNA
duplexes whose hybridization kinetics has been extensively
characterized previously.”¥*!*##>47=31 R;, RD relies on
measuring the exchange contribution (R,,) to transverse spin
relaxation (R,) due to chemical exchange between a major
ground-state (GS) and a low-abundance and short-lived
“excited-state” (ES).”>*?

Prior R;, studies on RNA and DNA duplexes were carried
out at temperatures below the melting temperature
(T,).**>*73° Under these conditions, the population (p,) of
the single-stranded (ss) species falls below detection
(<0.1%),”" enabling studies of bp dynamics. For example, at
T =25 °C, the R, profiles measured for various sites in the A4-
DNA duplex’” (T,, ~ 51 °C and [A¢-DNA] ~ 0.9 mM)
reflect exchange between a major Watson—Crick GS and
minor Hoogsteen ES™> (Figures 2A, 2B, S1). There is no
evidence for a transient ss species, which is estimated to have a
Pss ~ 0.1% based on UV melting experiments (Table S1).
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Figure 2. Site-specific characterization of AsDNA hybridization
kinetics using NMR R,, RD. (A) The A¢-DNA duplex. Aw = wgs —
@gs obtained from global fitting of the R;, RD profiles is color-coded
on each atom. Sites which are not colored indicate that no
measurements were done. (B) Off-resonance R, (**C) RD profiles
measured in A;-DNA at 25 °C (left) and 45 °C (right). T9(C1’) RD
at 25 °C was reprinted with permission from 58. Copyright 2018
Springer. Buffer conditions were 25 mM NaCl, 15 mM sodium
phosphate, 0.1 mM EDTA, and 10% D,O at pH 6.8. (C) The site-
specific k. values obtained from two-state fitting of the R;, RD
profiles measured for A;-DNA at 45 °C. (D) Comparison of Awgg g
= wgg — g measured by RD with Awg 4 = 0, — @y values
obtained from the major and minor resonance observed in 2D
[*C,'H], ["*N,'H], and [N, *C] HSQC spectra of A;-DNA at 45
°C.

Based on simulations,”® increasing the temperature so that
pss > 1.0% should bring hybridization kinetics within R,,
detection (Figure S2). Indeed, the R;, profiles for A¢-DNA
changed when increasing the temperature to T = 45 °C
(p~10%). RD is now apparent at A16(C2) and T9(C1'),
which are otherwise flat at T = 25 °C (Figure 2B). A single
peak was observed in all cases consistent with two-state

exchange (GS = ES). Fitting the R,, data to a two-state
exchange model yielded very similar k; = k. (differences <2-
fold; kg is the rate constant for dissociation) for different sites
as expected for concerted melting and annealing of the duplex
(Figure 2C). This is in stark contrast to Hoogsteen exchange at
T = 25 °C, in which k; varies 50-fold across sites reflecting
sequence-specific differences in bp dynamics.”” The ES
chemical shifts measured for various sites were also in excellent
agreement with those measured for the isolated ss, confirming
that the ES is the ss species (Figures 2D, S3).

In the “zip-up” model,"**° DNA annealing proceeds through
a slow nucleation step followed by a fast zipping step occurring
on the ns-us time scale which is too fast for RD detection.
Since the Hoogsteen exchange at higher temperatures is likely
too fast for RD detection, “all-or-nothing” behavior is observed
with strands either being fully annealed or fully unzipped.
These results establish the utility of R;, RD to measure
hybridization kinetics in DNA duplexes with site-specific
resolution.

The backward rate constant k_; = k,, X [ss] (k,, is the rate
constant for duplex annealing) was ill-defined when fitting the
R,, RD data (Figure S4). Such a degeneracy is expected when
the exchange is slow on the NMR time scale and when using
spin lock powers (@) in the R,, experiment that exceed the
exchange rate (ko = k; + k_).°"%* Indeed, in the slow
exchange limit, the line broadening of the GS resonance only
depends on the forward rate. To address this degeneracy, we
used CEST experiments which can employ much lower spin
locking fields more suitable for characterizing systems in slow
exchange.g’?”34 CEST relies on measuring the resonance
intensity of the GS as a function of the power and offset of
an applied weak radio frequency (rf) field. At T = 45 °C, the
CEST profiles for A;--DNA revealed a dip at the chemical shift
of the ss ES (Figures 3A, 3C, SS). Fitting the CEST profiles
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Figure 3. Site-specific characterization of hybridization kinetics using
CEST. (A) C CEST profile for G11(C8) measured in A;-DNA at
45 °C. (B) Comparison of Awgg.gs, ke and k,, values obtained from
R,, and CEST (fits of the R,, profiles were preformed fixing py; to the
value measured using CEST). Buffer conditions were 25 mM NaCl,
1S mM sodium phosphate, 0.1 mM EDTA, and 10% D,O at pH 6.8.
(C) The sequence of A,-DNA and A;-DNA. Aw = wgg — @gg
obtained from CEST fitting is color-coded on each atom. (D) “*C
CEST profiles for G11(C8) measured in A,-DNA and A-DNA at SO
°C. (E) Comparison of k,, and kg values measured for A,-DNA (red)
and A¢-DNA (green).
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allowed the reliable determination of all exchange parameters
including k., (Figure S4), resulting in values (Figure 3B) that
are in good agreement with those previously reported values
for similar DNA duplexes.*>*°

Fixing p,; to the CEST determined value, the R;, RD profiles
could be satisfactorily globally fitted (Figure SS), yielding
exchange parameters (k; = kg k_; = ko, X [ss], and Awgg gs)
that are in excellent agreement with the CEST derived values
(Figure 3B, Tables S3, S4). This mutual consistency further
supports the validity of the approach. Finally, we further
evaluated the CEST methodology by comparing the hybrid-
ization kinetics of A;-DNA with another A,-DNA duplex,
which has higher stability (T,, ~ 60 °C and [A,-DNA] ~ 0.8
mM) (Figure 3C, 3D). Consistent with prior studies,”’ ™" the
two duplexes have similar k_, values, but kg is 20-fold faster for
the less stable A;-DNA duplex (Figure 3E).

Next, we applied the methodology to examine how m°A
impacts hybridization kinetics in an RNA duplex containing
the most abundant m°A consensus sequence (GGACU) in
eukaryotic mRNA"* (T,, ~ 80 °C and [dsGGACU] ~ 0.7 mM
with Mg®*). In canonical RNA duplexes, there are no
contributions from Hoogsteen exchange or any other process
as verified for Watson—Crick bps in a variety of sequence and
structural contexts.”* However, since m°A could induce local
melting of the duplex, it was important to carry out
measurements on the m®A residue itself. To this end, two
dsGGACU duplexes were chemically synthesized containing
3C2/C8 labeled m°A or A near the center of the duplex
(Figures 4A, S1, S6) (see methods). m°A destabilized the
dsGGACU duPIex by ~1 kcal/mol (Table S1), consistent with
prior studies.”**

The CEST and R;, profiles for both unmodified and
modified dsGGACU duplexes at T = 65 °C revealed a single
peak/dip consistent with two-state exchange (Figures 4B, S7).
However, the profiles for the modified duplex differed
markedly from its unmodified counterpart (Figures 4B, S7).
In both cases, global fitting of the CEST and R, data yielded
ES chemical shifts that are in excellent agreement with those
measured for the isolated ss (Figures 4C, S7, S8). Fitting the
CEST data revealed that m®A changes kg by 0.7—1.7-fold but
decreases k,, by 4—9-fold (Figures 4D, S7). This m°A induced
slowdown of annealing was observed robustly with or without
Mg** (Figures 4D, S7), for a different sequence derived from
the hepatitis C virus (HCV)" (T,,~76 °C and [dsHCV] ~ 0.7
mM with Mg**) (Figures S1, S7), at a higher concentration of
monovalent ions (Figure S7), and when using the R, RD data
(Figure S7).

When unpaired, the N®methyl group favors the syn
conformation, while the anti conformation required for
Watson—Crick pairing and duplex annealing is unfavorable
with an estimated population of ~3%.°® Rotation of the N°-
methyl group is likely responsible for the reduced annealing
rate. Mismatches have also been shown to reduce k,, by up to
50-fold*”** through mechanisms that are not fully understood.
Further studies are needed to dissect the kinetic mechanism by
which m®A slows the annealing rate and how this varies with
position and sequence context.”*

In conclusion, we have described an NMR strategy for site-
specifically resolving duplex hybridization kinetics. The ease
and throughput of these experiments can be improved in the
future by using longitudinal optimized 'H-CEST experiments®®
as well as other approaches for optimal data collection.***®
The approach can also be applied to mismatch containing
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Figure 4. Measuring the impact of m°A on dsGGACU hybridization
kinetics using CEST. (A) The dsGGACU sequence. Aw = wgg — Wgs
obtained from global fitting of CEST is color-coded on each atom.
(B) *C CEST profiles measured for A6 in unmodified (left, green)
and m®A modified (right, red) dsGGACU at 65 °C in the presence of
3 mM Mg** (profiles in the absence of Mg** are shown in Figure S7).
Buffer conditions were 25 mM NaCl, 15 mM sodium phosphate, 3
mM Mg“, 0.1 mM EDTA, and 10% D,O at pH 6.8. (C) Comparison
of Awgg gs = Wgs — Wgs measured by CEST with Awg, 4, = 0 — @y,
values obtained from the major and minor resonance observed in 2D
[*C,'H] HSQC spectra of dsGGACU with (red) and without
(green) m®A at 65 °C. (D) Comparison of k,, and kg measured for
unmodified (green) and m®A modified (red) dsGGACU.

duplexes ideally by targeting remote sites that are not involved
in any local mismatch dynamics and to use multisite exchange
models as needed to fit data.*® Our results show that in the
middle of a duplex, m°A minimally affects the melting rate but
substantially decreases the rate of annealing. This may help
explain why tRNA selection during translation is slower for
mRNAs containing m®A.”" m®A is also found in the seed
sequence of microRNAs and in their mRNA target sites,”” and
mismatches that slow down microRNA:mRNA annealing have
substantial effects on gene expression.”* Thus, m°A could
similarly affect gene expression by altering the kinetics of
annealing. m®A may also affect the kinetics of RNA-protein and
RNA-ligand association and also reshape cotranscriptional
RNA folding pathways®®~”' by prolonging the lifetime of the
unpaired conformation””’>”® perhaps in a manner analogous
to cis—trans proline isomerization in prot(eins.74’75
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