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As the Watson–Crick faces of nucleobases are protected in
dsDNA, it is commonly assumed that deleterious alkylation
damage to the Watson–Crick faces of nucleobases predomi-
nantly occurs when DNA becomes single-stranded during repli-
cation and transcription. However, damage to the Watson–
Crick faces of nucleobases has been reported in dsDNA in vitro
through mechanisms that are not understood. In addition, the
extent of protection from methylation damage conferred by
dsDNA relative to ssDNA has not been quantified. Watson–
Crick base pairs in dsDNA exist in dynamic equilibrium with
Hoogsteen base pairs that expose theWatson–Crick faces of pu-
rine nucleobases to solvent. Whether this can influence the
damage susceptibility of dsDNA remains unknown. Using dot-
blot and primer extension assays, we measured the susceptibil-
ity of adenine-N1 to methylation by dimethyl sulfate (DMS)
when in an A-T Watson–Crick versus Hoogsteen conforma-
tion. Relative to unpaired adenines in a bulge, Watson–Crick
A-T base pairs in dsDNA only conferred ~130-fold protection
against adenine-N1 methylation, and this protection was
reduced to ~40-fold for A(syn)-T Hoogsteen base pairs embed-
ded in a DNA-drug complex. Our results indicate that Wat-
son–Crick faces of nucleobases are accessible to alkylating
agents in canonical dsDNA and that Hoogsteen base pairs
increase this accessibility. Given the higher abundance of
dsDNA relative to ssDNA, these results suggest that dsDNA
could be a substantial source of cytotoxic damage. The work
establishes DMS probing as a method for characterizing A
(syn)-T Hoogsteen base pairs in vitro and also lays the founda-
tion for a sequencing approach to map A(syn)-T Hoogsteen
and unpaired adenines genome-wide in vivo.

TheWatson–Crick faces of nucleobases are tucked in the in-
terior of the DNA double helix, where they are largely inacces-
sible to solvent, shielded by Watson–Crick hydrogen bonding,
and protected from endogenous and environmental agents that
may cause various deleterious forms of alkylation damage (1–
3). Yet alkylation damage to theWatson–Crick faces of nucleo-
bases does occur in nature (4–9) and can result in base modifi-
cations (Fig. 1A) that prevent Watson–Crick pairing and block
or interfere with DNA replication. A variety of damage repair
enzymes have evolved to address these lesions (7, 10), which, if
left unrepaired, can be highly cytotoxic and/ormutagenic (4, 11).

It is generally accepted that alkylation damage to the Wat-
son–Crick faces of nucleobases by endogenous and environ-
mental agents as well as anti-cancer therapies (5, 6, 12) occurs
primarily during replication and transcription, when the DNA
is transiently single-stranded (4). In vitro studies have shown
thatWatson–Crick hydrogen bonding causes differences in the
reactivity profiles of ssDNA and dsDNA such that alkylation
products at nitrogen functional groups involved in hydrogen
bonding (e.g. adenine-N1 and cytosine-N3) are diminished in
dsDNA relative to ssDNA, making guanine-N7 and adenine-
N3 the most reactive sites in dsDNA (9, 13, 14). Moreover, in
prokaryotes, the activities of enzymes that repair alkylation
damage have been linked to the process of DNA replication (4,
15, 16). However, no clear correlation between human ABH2
and ABH3 expression and cell proliferation has been estab-
lished (4, 17). In addition, certain enzymes can repair alkylation
damage to the Watson–Crick faces of nucleotide bases in the
context of dsDNA (18, 19). Thus, it remains plausible that alkyl-
ation products targeting the Watson–Crick faces accumulate
and are repaired in a DNA replication–independentmanner.
Based on prior studies, it is also clear that theWatson–Crick

faces of nucleobases in dsDNA are indeed accessible to alkyla-
tion damage by reagents such as dimethyl sulfate (DMS) (13),
methyl methanesulfonate (14), ethylnitrosourea (9), and form-
aldehyde (20) in vitro. However, the mechanisms that underlie
this phenomenon are poorly understood. Furthermore, the
degree to which dsDNA protectsWatson–Crick faces of nucle-
obases from alkylation damage relative to ssDNA has not been
rigorously quantified. This is important, given that the dsDNA
is the dominant form of DNA in vivo, and that even if the reac-
tivity were 1000-fold lower for dsDNA versus ssDNA, damage
to dsDNA could still be a substantial source of alkylation dam-
age as the abundance of the dsDNA exceeds that of ssDNA by
an even greater amount.
In addition to becoming single-stranded, accessibility to the

Watson–Crick face in duplex DNA has also been proposed to
arise from alternative short-lived low-abundance conforma-
tional states that transiently expose nucleobases to solvent (9).
It has long been established that in duplex DNA, Watson–
Crick base pairs can spontaneously open and form conforma-
tions in which the otherwise buried and hydrogen-bonded im-
ino protons can exchange with solvent (21). Based on hydrogen
exchange measurements in vitro in naked duplexes, the abun-
dance of the base-opened state is exceptionally low, on the
order of 1025. A potentially more abundant conformational
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state that can increase the susceptibility of dsDNA toWatson–
Crick face damage even further is the Hoogsteen conformation
(22–25). A(syn)-T and G(syn)-C1 Hoogsteen bps form sponta-
neously in canonical dsDNA by flipping the purine bases 180°
from an anti to syn conformation, leaving the Watson–Crick
faces of the purine base exposed to solvent (Fig. 1B).
Hoogsteen-mediated alkylation damage to dsDNA could be

substantial when considering that they form robustly across
different DNA sequence and structural contexts with an abun-
dance (0.1–5%) that exceeds the base open conformation by at
least 2 orders of magnitude (21). Based on in vitro measure-
ments, there are millions of transient Hoogsteen bps in the
human genome at any given time (24). Moreover, Hoogsteen
bps can become the dominant conformation in DNA-protein
and DNA-drug complexes (26–31). However, little is known
regarding the vulnerability of dsDNA to damage when in the
Hoogsteen conformation.
Here, we tested the hypothesis that adenine-N1 in the A

(syn)-T Hoogsteen bp in dsDNA is more reactive to methyla-
tion by DMS as compared with A(anti)-T Watson–Crick bps.
In ssDNA, adenine-N1 is 10-fold more reactive than adenine-
N3, and the major adenine DMS methylation product is m1A
(32). In contrast, because adenine-N1 is protected in Watson–
Crick bps in dsDNA, the major adenine DMS methylation
product is m3A (14, 32). Therefore, we hypothesized that A-T
Hoogsteen bps in dsDNA would shift the reactivity from ade-
nine-N3, which is exposed in both the Watson–Crick and
Hoogsteen bps, to the more reactive adenine-N1, which is only
exposed in the Hoogsteen conformation. In addition to provid-
ing insights into the potential role of Hoogsteen bps in DNA
damage, this unique reactivity signature could also provide a
means by which to discriminate Hoogsteen versus Watson–
Crick bps in vitro and possibly in vivo using sequencing-based
approaches. Using DMS as the methylating agent allowed us to
investigate the alkylation susceptibility of Hoogsteen bps and
also to develop a methodology for detecting Hoogsteen bps,
given the well-established utility of DMS in mapping nucleic
acid structure in vitro and in vivo (33–37).

Given that N1-me-A (m1A) (Fig. 1A), the product of N1-
methylation of adenine, is a highly toxic lesion that blocksWat-
son–Crick pairing and DNA replication (4–6, 12), a variety of
repair enzymes have evolved to address this lesion. m1A is
repaired by a-ketoglutarate–dependent dioxygenase (AlkB)
(10, 38, 39), and its human analogs ABH2 and ABH3 (17, 40)
via oxidative demethylation. Our methodology for detecting
m1A takes advantage of AlkB-mediated repair to enhance the
specificity of m1A detection.
Our results reveal a mechanism for damagingWatson–Crick

faces of DNA via A-T Hoogsteen bps without the need for
melting dsDNA and also establish the utility of DMS probing in
characterizing A(syn)-T Hoogsteen base pairs in addition to
unpaired adenines in dsDNA in vitro. This work also lays the
foundation for a new sequencing approach to map Hoogsteen
and unpaired nucleotides genome-wide in vivo.

Results

Assaying the specificity of the m1A antibody

We developed an antibody-based rescue-coupled dot-blot
assay to specifically detect and quantify m1A following treat-
ment of DNA oligonucleotides with DMS. Our assay integrates
aspects of the m1A-MaP strategy used previously to map the
m1A RNA methylome (41). It uses the anti-m1A mAb (anti-
m1A mAb, MBL International) (42) to specifically detect m1A.
This antibody has previously been shown to specifically bind
m1A and to discriminate against noncognate nucleosides and
nucleobases, including m6A, m1G, m2G, m7G, and unmethy-
lated nucleosides, which bind with .1000-fold weaker affinity
(42, 43). The antibody has been shown to cross-react with the
m7G-ppp-A extended cap structure in mRNA (44). However,
this is of no consequence for our studies, which are focused on
DNA oligonucleotides lacking this cap structure.
Prior studies have not tested the antibody specificity against

m3A, which is a major adenine DMS methylation product in
dsDNA. Due to its chemical instability, it is currently infeasible
to obtain oligonucleotide containing m3A. We therefore used
the m3A nucleobase in competition-based dot-blot assays to

Figure 1. Proposed Hoogsteen-mediated alkylation damage to the Watson–Crick face of nucleotide bases. A, DNA adducts targeting Watson–Crick
faces of purine bases: N1-methyladenine, 1,N6-ethenoadenine,N1-methylguanine, N2-ethylguanine, 1,N2-propanoguanine, and 1,N2-ethenoguanine. B, exchange
betweenWatson–Crick and Hoogsteen bps and proposed Hoogsteen-mediated alkylation damage toWatson–Crick face of purines.

Hoogsteen-mediated DNA damage

15934 J. Biol. Chem. (2020) 295(47) 15933–15947

 at D
uke U

niversity on D
ecem

ber 28, 2020
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


test the binding specificity of the antibody against the m3A.
The same assay was also used to verify binding specificity
against m7G, which is another major DMS product of dsDNA.
In agreement with prior studies (42, 43), the antibody discrimi-
nates against m7G to which it binds with.625-fold weaker af-
finity relative to m1A (Fig. 2A). Although to a smaller degree,
the antibody also discriminated against m3A to which it binds
with.25-fold weaker affinity relative tom1A.
To further test whether the anti-m1A mAb can discriminate

m1A from other DMS products of ssDNA, including the major
products m7G and m3C and the minor products m3G, O6-
methylguanine, m3T, and O2-methylthymine (32, 45), we sub-
jected (see “Experimental procedures”) ssDNA with (ss1) or
without (ss2) a single adenine nucleotide to DMS treatment
(Fig. 2B). As expected, ss1 showed a clear dot-blot signal fol-
lowing DMS treatment, whereas ss2 showed no detectable sig-
nal (Fig. 2B).
To further verify that the signal observed in ss1 is predomi-

nantly due to m1A and not m3A, we subjected the DMS-treated

ss1 oligonucleotides to AlkB treatment. AlkB repairs m1A in
both ssDNA and dsDNA but does not repair m3A (10, 15, 46).
As expected, we did not observe any detectable signal from ss1

following AlkB treatment (Fig. 2B). As a final confirmation, we
incubated the DMS-treated ss1 in a buffer and temperature
condition that favors the Dimroth rearrangement (47, 48),
which specifically converts m1A, but not m3A, into m6A and
observed nom1A signal in the dot-blot assay (Fig. 2B).
These results indicate that DMS methylates adenine-N1 in

ssDNA, that the antibody enables detection of m1A with unde-
tectable cross-reactivity to m3A or other DMS products under
these conditions, and that AlkB treatment and the Dimroth
rearrangement can be used to assess the specificity of m1A
detection.

The anti-m1A mAb antibody binds m1A in dsDNA

A prior study showed that anm6A antibody bound tom6A in
dsRNAwith.10-fold weaker affinity as compared withm6A in
single-stranded RNA (49). We therefore compared the ability

Figure 2. Sensitive detection of m1A using a dot-blot assay coupled to specific rescue. A, competition-based dot-blot assay for assessing m1A antibody
specificity. Shown are the dsDNA oligonucleotides used in the competition-based dot-blot assay alongwith the raw dot-blot data. m1A is highlighted in red. 50
pmol of the dsDNA was blotted on the membrane followed by incubation with the m1A antibody premixed with the indicated amount of the competitor
nucleobases. B, specific DMS-induced m1A detection using a rescue-coupled dot-blot assay. Shown are the ssDNA oligonucleotides with (ss1) and without
(ss2) a single adenine residue (highlighted in red) along with the raw dot-blot data following 15-min DMS (75 mM) treatment pre- and post-AlkB repair and
Dimroth reaction, along with their respective methylene blue loading controls (in gray). C, DNA secondary structure–independent detection of m1A. Shown
are the DNA oligonucleotide containingm1A (highlighted in red) and the corresponding raw dot-blot data for ssDNA and dsDNA.D, specific DMS-inducedm1A
detection at Watson–Crick A-T bps and unpaired bulge adenines. Shown are the DNA oligonucleotides containing two adenines in bulge conformation
(hpbulge) (highlighted in red) or in an A-T Watson–Crick (hpTA) along with the raw dot-blot data following 15-min DMS (75 mM) treatment pre- and post-AlkB
repair and Dimroth reaction. Also shown are their respective methylene blue loading controls (shaded gray).

Hoogsteen-mediated DNA damage

J. Biol. Chem. (2020) 295(47) 15933–15947 15935

 at D
uke U

niversity on D
ecem

ber 28, 2020
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


of the anti-m1A mAb antibody to recognize and bind m1A in
dsDNA versus ssDNA. Unlike for m6A, we found that the m1A
antibody binds to m1A in dsDNA with only ;2-fold lower af-
finity relative to m1A in ssDNA (Fig. 2C). However, it should be
noted that the relative affinity to ssDNA and dsDNA does vary
with sequence context, with the affinity apparently becoming
weaker for dsDNA when surrounding the m1A with stable G-C
bps (data not shown).

m1A detection following DMS treatment of bulge adenines

We benchmarked the AlkB rescue-coupled dot-blot assay by
quantifying the m1A adduct following DMS treatment of two
DNA duplexes containing two adenine residues (Fig. 2D) that
are either exposed in a bulge (hpbulge) or protected by forming
two canonical Watson–Crick A-T bps (hpTA). Hairpin con-
structs were used to increase duplex stability and minimize any
reactivity from ssDNA due to melting or from having one
strand in excess when using duplexes. A thymine-rich apical
loop was used to enhance the DNA cross-linking efficiency to
the nylon membrane in the dot-blot assay (see “Experimental
procedures”).
For these experiments, we sought to work under conditions

of single-hit kinetics in which a given DNA molecule reacts no
more than once with DMS (50–52). This was important for two
reasons. First, this is necessary to ensure that the observed reac-
tivity arises from the parent oligonucleotide and not from sec-
ondary methylation of singly methylated DNA. For example,
production of m7G could destabilize a neighboring A-T bp,
increasing its susceptibility to formm1A and resulting in a spu-
rious m1A signal. Second, duplexes with variable degrees of
methylation may have different stabilities, and this could also
bias their ability to bind the antibody in the dot-blot assay. Hav-
ing said that, any differences in reactivity due to either primary
or secondary methylation seen for our highly controlled Wat-
son–Crick versus Hoogsteen dsDNAs (see below) would have
to originate from intrinsic differences in damage susceptibility
between theWatson–Crick and Hoogsteen conformation.
Experiments were performed using 75 mM DMS for two

reaction times (5 and 15 min), and the methylation stoichiome-
try was assessed using MALDI MS (53). Based on the MALDI
analysis of all DMS-treated samples, the major product for the
5-min reaction was singly methylated DNA, whereas for the
15-min reaction, peaks corresponding to doubly methylated
DNA were also observed (Fig. S1). We present results from
both reaction conditions because the 15-min reaction time
gave a stronger signal/noise ratio and because using the two
data sets allows for more robust quantification of any differen-
ces in reactivity due to primary or secondary methylation
between the Watson–Crick and Hoogsteen conformations. As
will be detailed below, similar trends were observed for both
reaction conditions.
In the dot-blot assay, a strong signal was observed for the

DMS-treated hpbulge, indicating that the dinucleotide adenine
bulge is accessible to DMSmethylation (Fig. 2D). Moreover, no
signal was detected post Dimroth reaction and following AlkB
treatment, confirming that the signal primarily reflects the
m1A product (Fig. 2D). Similar results were obtained for a dif-

ferent DNA sequence (Fig. S2). We also verified that the
diminishment in m1A signal observed upon AlkB treatment
results from the specific demethylation of m1A by performing
the AlkB reaction in the absence of co-factors essential for
catalytic activity and observed no detectable decrease in m1A
signal (Fig. S2).

DMS-treated dsDNA produces m1A likely through an
alternative DNA conformation

Relative to the unpaired adenine bulge, the m1A signal was
reduced substantially by as much as 130-fold for the Watson–
Crick hpTA duplex (Fig. 2D and Fig. S5). This residual signal is
unlikely to arise from cross-reactivity with m3A or unmodified
adenine, given that no signal was detected following AlkB treat-
ment (Fig. 2D and Fig. S5), or from cross-reactivity with other
bases and/or their DMS methylation adducts, given that no
signal was detectable in the DMS-treated ss2 negative control
(Fig. 2B).
Alternatively, the residual signal could correspond to m1A

arising frommethylating dsDNA, which has been reported pre-
viously (13). Here, our quantification of the signal allows us to
consider alternative conformational states that could be sus-
ceptible to damage. The m1A signal was reduced by up to 130-
fold for the hpTA duplex relative to hpbulge. However, we would
have expected ;100,000-fold reduction if m1A arose from
methylating the base open state, which has an abundance of
;1025 (21). Likewise, the signal is unlikely to arise from meth-
ylating the melted hairpin, which is estimated to have an abun-
dance of 1027 to 1026 (Table S1). The residual reactivity could
arise from transient A-T Hoogsteen bps, which have an abun-
dance of ;1%, assuming that the DMS reactivity of the ade-
nine-N1 is similar in the Hoogsteen and bulge conformations.
There could also be other hitherto poorly characterized confor-
mational states in dsDNA that increase the susceptibility of ad-
enine-N1 to methylation damage. Finally, whereas the residual
signal was observed under single-hit kinetics conditions, we
cannot entirely rule out that at least some of the signal reflects a
minority of secondary methylated species that form in low
abundance under these reaction conditions and that fall outside
the detection limit ofMALDI.

Echinomycin-DNA complexes as models for Watson–Crick
and Hoogsteen base pairs

Assessing the reactivity of adenine-N1 in an A-T Hoogsteen
bp requires the preparation of dsDNA samples containing the
A-T Hoogsteen bp as the dominant conformation. To this end,
we prepared complexes between dsDNA and echinomycin, an
antibiotic with anti-tumor activity (54, 55) that binds to CpG
steps (CG) in dsDNA. Prior studies have shown that when two
echinomycin molecules (or its close analog triostin A) bind to
DNA sequences containing a TpA step sandwiched between
two CpG-binding sites (d(CGTACG)), the TpA step forms two
tandem A-T Hoogsteen bps (29, 56–60). Based on the crystal
structure of the echinomycin-DNA complex (59) (see Fig. 7),
adenine-N1 in the A-T Hoogsteen bps is solvent-accessible and
not blocked by the bound echinomycin molecules and, there-
fore, should be accessible to DMS methylation. Although the

Hoogsteen-mediated DNA damage
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complex only allows us to assess the reactivity of tandem A-T
Hoogsteen bps, and not the Hoogsteen bps flanked by Wat-
son–Crick bps that occur transiently in naked DNA duplexes,
tandem Hoogsteen bps are common in DNA-protein and
DNA-drug complexes (reviewed in Ref. 26). As a negative con-
trol, we also examined a complex in which the TpA step is
replaced by an ApT step, which retains two A-TWatson–Crick
bps even following echinomycin binding (61).
We designed self-complementary hairpins (Fig. 3A) suitable

for the dot-blot assay by elongating the core sequences of d
(CGTACG) and d(CGATCG) previously shown to form
Hoogsteen (29) and Watson–Crick (61) A-T bps, respectively,
upon echinomycin or triostin A binding. Again, a thymine-rich
apical loop was used to enhance the cross-linking efficiency to
the nylonmembrane (Fig. 3A).
Using NMR spectroscopy, we verified that the duplexes (Fig.

3A) do indeed bind to echinomycin, as suggested by marked
chemical shift perturbations in free DNA resonances upon
intercalative binding of echinomycin (Fig. S3). To verify the
A-T bp geometry in the TpA and ApT step complexes, we
first prepared shortened versions of the duplexes (ds(s)TA and
ds(s)AT) previously shown by NMR (60, 61) to form Hoogsteen
and Watson–Crick bps, respectively, upon echinomycin bind-
ing, in which only the TpA or ApT step was selectively labeled
with uniformly 13C/15N nucleotides (Fig. 3A). We observed the
expected chemical shift signatures unique to A-T Hoogsteen
bps (62, 63) in the TpA but not ApT step (Fig. 3B), including

the downfield-shifted adenine-C8 (144.3 ppm) accompanying
the flip of the adenine into a syn conformation. Using these
spectra as reference for the Hoogsteen andWatson–Crick con-
formations, we were able to verify formation of the Hoogsteen
and Watson–Crick bps in the hpTA, hpAT, dsTA, and dsAT

sequences used in our dot-blot assay based on the presence or
absence of Hoogsteen chemical shift signatures (Fig. 3B).

DMS-treated A-T Hoogsteen base pairs show enrichment in
m1A relative to Watson–Crick base pairs

Next, we subjected the dsDNA oligonucleotides (Fig. 4A) to
our dot-blot assay in the absence and presence of echinomycin.
Following DMS treatment and quenching, the free DNA and
DNA-echinomycin complexes were purified to remove residual
2-mercaptoethanol (b-ME), salt, and echinomycin. The meth-
ylated DNA was then divided into three aliquots; one aliquot
was subjected to AlkB rescue and another to the Dimroth reac-
tion, and a third aliquot was used form1A quantification.
Once again, the unbound hpTA and hpAT Watson–Crick

DNA duplexes showed a small but detectable m1A signal (Fig.
4B). The DNA-echinomycin complexes showed markedly dif-
ferent m1A signal intensity than the unbound DNA (Fig. 4B).
To assess the impact of echinomycin binding on reactivity, we
computed echinomycin-induced m1A enhancement as the ra-
tio between the m1A signal of the dsDNA-echinomycin com-
plex and its unbound dsDNA counterpart.

Figure 3. NMR experiments verifying formation of Hoogsteen and Watson–Crick bps upon drug binding. A, dsDNA oligonucleotides used in the NMR
experiments. Shown are the reference dsDNA containingWatson–Crick (ds(s)AT) or Hoogsteen (ds(s)TA) bps as well as hairpin (hpAT and hpTA) and duplex (dsAT

and dsTA) dsDNA used in the dot-blot assays. Dark blue sticks represent the echinomycin molecule and its binding site at the CpG step. A-T bps adopting the
Hoogsteen or Watson–Crick conformation in the DNA-echinomycin complexes are highlighted in red and cyan, respectively. B, overlay comparing 2D [13C, 1H]
HSQCNMR spectra of the aromatic region of DNA-echinomycin complexes for the reference dsDNA and the dsDNA used in the dot-blot assays. All spectra cor-
respond to DNA-echinomycin complexes. For the AT-step DNA complexes, which contain Watson–Crick AT bps, resonances are only observed in the Watson–
Crick region, not in the Hoogsteen region. In contrast, for the TA-step DNA complexes, which contain AT Hoogsteen bps, resonances were observed only in
the Hoogsteen region and not in theWatson–Crick region.

Hoogsteen-mediated DNA damage
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For the Watson–Crick hpAT dsDNA, echinomycin binding
reduced the m1A signal ;2–4-fold relative to the unbound
hpAT DNA (Fig. 4, C and D). This could reflect quenching of
transient Hoogsteen bps at these sites in the naked hpAT duplex
upon echinomycin binding. It was previously proposed (64)
that the dipole interaction between the quinoxaline group of
echinomycin and its adjacent A-T bp does not favor a Hoogs-
teen bp when an ApT step is sandwiched between echinomy-
cin-binding sites. Alternatively, the bound echinomycin may
protect the bps neighboring the A-T and reduce secondary
methylation of the A-T bps or even protect the A-T bps directly
through nonspecific binding, thereby reducing m1A relative to
the free duplex. Any secondary methylation would have to be
sufficiently low in abundance to remain undetected byMALDI.
In contrast, for the Hoogsteen hpTA DNA, we observed ;4-

fold echinomycin-induced m1A enhancement (Fig. 4, C andD).
Moreover, the enhancements were robustly observed across
varying sequence contexts, in duplex and hairpin contexts, and
for varying DMS incubation times (Fig. 4 (C andD) and Figs. S4
and S5). In all cases, the signal was severely attenuated follow-

ing AlkB treatment or the Dimroth reaction, confirming that
the signal mainly corresponds to the m1A product. These
results show that at least for the DNA-echinomycin complexes
studied here, adenine-N1 is more susceptible to DMSmethyla-
tion in the Hoogsteen versus Watson–Crick conformation.
However, these differences in reactivity may vary with ionic
strength, sequence contexts, length of duplex, and different
DNA-small molecule andDNA-protein complexes.
Relative to Watson–Crick bps, the m1A enhancement in the

echinomycin-induced A-T Hoogsteen bps under single-hit ki-
netic conditions was;40-fold lower relative to the correspond-
ing enhancement seen for unpaired bulge adenines in hpbulge

(Fig. 4C, compare hpbulge with hpTA). This implies that ade-
nine-N1 in an echinomycin-induced A-T Hoogsteen bp is 40-
fold less reactive than unpaired adenine-N1. It is possible that
the more constrained Hoogsteen conformation diminishes
reactivity relative to unpaired adenines by sterically hindering
the SN2 geometry required for DMS attack (13, 65). If this were
the case, the reactivity observed for naked Watson–Crick
duplexes (see Fig. 2D, hpTA) could not be explained by the

Figure 4. Dot-blot assay showingm1A enhancement in echinomycin-induced A-T Hoogsteen bps. A, dsDNA oligonucleotides used in the dot-blot assay.
The CG echinomycin-binding sites are underlined. The unpaired adenines in the bulge and the A-T bps that convert into the Hoogsteen conformation upon
echinomycin binding are shown in red. B, a set of representative dot blots of free and echinomycin bound DNA under 15-min DMS (75 mM) treatment with
and without AlkB repair and Dimroth reaction along with their respective methylene blue loading controls (shaded gray). C, quantification of dot-blot data for
hpbulge, hpTA, and hpAT under 5-min DMS (75 mM) treatment. D, quantification of dot-blot data for three sets of DNA sequences under 15-min DMS (75 mM)
treatment. The bar plots in C and D show the enhancement of the m1A signal between the DNA-echinomycin complexes and their free DNA counterparts. For
hpbulge, them1A enhancement is calculated with respect to free hpTA DNA. Shown are the averagem1A enhancement from three independent DMS treatment
replicates. Error bars, S.D. Statistical significance is calculated using the unpaired two-tailed parametric Student’s t test with 95% confidence interval. *, p ,
0.05; **, p, 0.01; ***, p, 0.001.
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transient Hoogsteen bps. As described above, it is also possible
that echinomycin protects the DNA from primary or secondary
methylation in the drug complex and therefore results in reduc-
tion of m1A relative to the free duplex, in which case the
Hoogsteen reactivity in the complex underestimates its reactiv-
ity in naked DNA. If we assume that the reactivity of adenine-
N1 in Hoogsteen is underestimated by 4-fold, given that
echinomycin binding confers 2–4-fold protection to the
Watson–Crick hpAT DNA (Fig. 4C), then the Hoogsteen
reactivity would only be 10-fold lower than the unpaired ad-
enine. At this level of reactivity, it is possible that some of
the m1A signal seen in the naked DNA duplexes reflects
transient A-T Hoogsteen bps.

AlkB-coupled primer extension reveals enrichment of m1A at
Hoogsteen base pairs

To further confirm that the enhanced DMS reactivity seen in
the echinomycin-hpTA complex arises from methylation of ad-
enine-N1 specifically at the A-T Hoogsteen bps, and to set the
foundation for a new sequencing strategy to detect adenine nu-
cleotides in unpaired and Hoogsteen conformations, we per-
formed primer extension on DMS-treated duplexes that form
either Watson–Crick or Hoogsteen bps upon echinomycin
binding, pre- and post-AlkB repair.
ForWatson–Crick bps in the unbound DNA duplexes and in

the dsAT-L-echinomycin complex, the main DMS methylation
products (m3A and m7G) are expected to induce AlkB-insensi-
tive stops in the primer extension assay. m3A is a highly toxic
lesion that blocks DNA replication (5), and although m7G gen-
erally does not affect DNA replication, it is prone to spontane-
ous depurination to form an abasic site that blocks DNA repli-
cation (66), and consequently, it is typical to observe stops
at unprotected guanines in primer extension assays (5, 67).
In contrast, for the tandem Hoogsteen A-T bps in the dsTA-L-
echinomycin complex, the DMS methylation product m1A is
expected to induce AlkB-sensitive stops.
Because of the lower sensitivity relative to the dot-blot assay,

a higher DMS concentration (150 mM) and longer reaction
time (15 min) needed to be used in the primer extension assay
(37, 68). Whereas these conditions likely fall outside the single-
hit kinetics regime, the results from the dot-blot assay indicate
that the relative trends in reactivity for theHoogsteen andWat-
son–Crick bp are preserved between single-hit and multihit
kinetics conditions.
As a positive control, we first verified thatm1A efficiently ter-

minates the Q5 High Fidelity DNA Polymerase (New England
Biolabs Inc.) by subjecting two chemically synthesized dsDNA
oligonucleotides with (dsm1A) or without (dsunmod) a single
m1A to the primer extension stop assay. As expected, whereas
the major product for dsunmod was full-length DNA, for dsm1A,
the major product was DNA truncated immediately upstream
of m1A (Fig. 5A). Furthermore, primer extension with AlkB-
treated dsm1A resulted in full-length DNA as the main product.
Thus, m1A can efficiently terminate the primer extension of
this DNA polymerase, producing DNA products truncated one
nucleotide before them1A site.

To verify that the AlkB-coupled DMS primer extension assay
can pinpoint unpaired adenines within the context of a dsDNA
based on their unique adenine-N1 reactivity, we tested DNA
duplexes similar to those used in the dot-blot assay containing
either a dinucleotide adenine bulge (dsbulge-L, positive control)

Figure 5. Primer extension stop assay on dsDNA containing m1A. A,
dsDNA oligonucleotides with (dsm1A) and without (dsunmod) a chemically
modifiedm1A (highlighted in red) and the corresponding 10% urea polyacryl-
amide gel showing the primer extension products with and without AlkB
repair. The dashed line indicates the splicing of the gel. B, DNA oligonucleo-
tides containing either two unpaired adenines (dsbulge-L) (highlighted in red)
or two A-T Watson–Crick bps (dsTA-L) (highlighted in blue) and the corre-
sponding gel showing primer extension products of these DNA duplexes af-
ter 15-min DMS (150 mM) treatment with and without AlkB repair. The
methylated site of interest was identified by using both Sanger sequencing
and a lengthmarker (Fig. S6B). The results shown above were reproducible in
three independent replicates.
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or two A-T Watson–Crick bps (dsTA-L, negative control) (Fig.
5B). For DMS-treated dsTA-L, themajor primer extension prod-
uct was the full-length DNA (Fig. 5B). Bands corresponding to
products truncated at guanines and adenines could be observed
when increasing exposure time during gel imaging. This is con-
sistent with DMS-induced damage to Watson–Crick bps pro-
ducing DNA replication–blocking lesions m7G and m3A (67,
69, 70). As expected, these bands were insensitive to the AlkB
treatment. DMS-treated dsbulge-L showed a similar primer
extension pattern as dsTA-L. However, two bands with 3–5-fold
higher intensity as compared with dsTA-L were observed, corre-
sponding to products truncated immediately before each of the
two bulge adenines (Fig. 5B). These two bands were rescued fol-
lowing AlkB treatment, indicating that the polymerase stop can
be attributed to m1A (Fig. 5B). These results establish the efficacy
and robustness of the AlkB-coupled primer extension stop assay
for detection of exposed adenine residues in duplex DNA at sin-
gle-nucleotide resolution.
Finally, we performed the primer extension assay on DMS-

treated echinomycin-dsDNA complexes. The dsDNA sequen-
ces used in these studies were elongated (dsTA-L and dsAT-L; see
Fig. 6A) relative to those used in the dot-blot assay to allow for
primer binding. For the unbound dsTA-L and dsAT-L duplexes,
we observed the expected AlkB-insensitive products truncated
immediately upstream of guanines and adenines (Fig. 6B). A
similar pattern was also observed for the dsAT-L-echinomycin
complex (Fig. 6B). In contrast, the band corresponding to the
Hoogsteen site in the dsTA-L-echinomycin complex was highly
sensitive to AlkB treatment (Fig. 6B, red box), indicating enrich-
ment inm1A product at this site.
To quantify the m1A level in Hoogsteen versus Watson–

Crick bps and compare band intensity across different samples,
we quantified and normalized the data as follows. For each
sample, the band intensity of the truncation product at the ade-
nine of interest was normalized relative to the band intensity of
the full-length product. This normalized value represents the
polymerase stop frequency at the adenine of interest. For the
DMS-treated (without AlkB repair) sample, polymerase stops
can be induced by both m1A and m3A, so we define this nor-
malized value in the DMS-treated sample as the polymerase
stop frequency due to m1A and m3A (fm1A1m3A). In contrast,
for the DMS-treated AlkB-repaired sample, the polymerase
stop is induced by m3A, so we define the normalized value in
the AlkB-repaired sample as the polymerase stop frequency
due to m3A (fm3A). By subtracting these two quantities, we
obtain the m1A-induced polymerase stop frequency (fm1A =
fm3A1m1A – fm3A).
As shown in Fig. 6C, the unbound free DNA (dsTA-L and

dsAT-L) showed some residual m1A signal, which is consistent
with the results from the dot-blot assay (Fig. 4B and Fig. S4A).
The fm1A value for the unpaired adenine in dsbulge-L was 7-fold
higher relative to theWatson–Crick A-T bp in unbound DNA,
indicating that the unpaired adenine-N1 is 7-fold more reactive
toward DMS as compared with adenine-N1 in aWatson–Crick
bp under these reaction conditions. The 7-fold enhancement is
in reasonable agreement with the ;30-fold (see Fig. 4D,
hpbulge) enhancement observed in the dot-blot assay for the 15-
min DMS reaction, especially when considering that a higher

DMS concentration was used in the primer extension assay,
which could disproportionately increase the apparent reactivity
of theWatson–Crick duplex due to secondary methylation.
For the Hoogsteen A-T bp in the dsTA-L-echinomycin com-

plex, the fm1A was;3-fold higher than the Watson–Crick A-T
bp in its free DNA control (Fig. 6C), which is consistent with
the dot-blot results for the 15-min DMS reaction (Fig. 4D).
This provides additional evidence that the reactivity of ade-
nine-N1 in the Hoogsteen versus Watson–Crick conformation

Figure 6. Primer extension stop assay onDMS-treated free and echinomy-
cin bound DNA. A, dsDNA oligonucleotides used in the primer extension
assay. The CG echinomycin binding site is underlined. The unpaired adenines in
the bulge and the A-T bps that convert into the Hoogsteen conformation upon
echinomycin binding are shown in red. B, a representative 10% urea polyacryl-
amide gel showing the products of primer extension for DMS-treated and AlkB-
repaired free and echinomycin bound DNA. Bands corresponding to adenine
of interest are highlightedwith rectangles. Nucleotides at which themethylation
causes the polymerase stop and thus giving the signal for a given band are indi-
cated on the side of the gel. The full gel is shown in Fig. S6A. The methylated
site of interest (Hoogsteen site) was identified by using both Sanger sequenc-
ing and a 37-mer lengthmarker (Fig. S6B). C, quantification of them1A-induced
polymerase stop frequency fm1A (fm1A = fm3A1m1A – fm3A) at the adenine
of interest. D, quantification of the fraction of total stops attributable to m1A
(m1A%=12 fm3A/fm3A1m1A) at the adenine of interest. C andD, the data repre-
sent the average of three independent DMS treatment replicates, and the
uncertainty is reported as the S.D. (error bars). Statistical significance is calcu-
lated using the unpaired two-tailed parametric Student’s t test with 95% confi-
dence interval. ns, p. 0.05; *, p, 0.05; **, p, 0.01; ***, p, 0.001.
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does not vary considerably between single-hit and multihit ki-
netic conditions. In contrast, the dsAT-L-echinomycin complex
did not show significant enhancement in m1A signal relative to
the free DNA. Due to the low signal/noise ratio, it was not pos-
sible to ascertain whether echinomycin binding confers a
small degree of protection, as observed in the dot-blot assay
(Fig. 6C). These results further confirm the higher reactivity
of adenine-N1 in Hoogsteen versus Watson–Crick A-T
conformations.
To compare the relative reactivity of adenine-N1 versus ade-

nine-N3 inWatson–Crick versusHoogsteen bps, we calculated
the proportion of total stops attributable to m1A at the adenine
of interest (m1A % = 12 fm3A/fm3A1m1A). As mentioned above,
fm3A1m1A and fm3A were obtained from the DMS-treated and
AlkB-repaired samples, respectively. As expected, for the naked
DNA duplexes (dsTA-L and dsAT-L), the majority (80–90%) of
the product was m3A, whereas for the unpaired adenine bulge,
the methylation reactivity shifted from adenine-N3 to adenine-
N1, with;60% of the product corresponding to m1A (Fig. 6D).
This is consistent with the DMS methylation pattern ob-
served in the canonical dsDNA (14) and the ssDNA (32),
respectively. Relative to the Watson–Crick bps, the echino-
mycin–induced Hoogsteen in dsTA-L-echinomycin complex
also shifted reactivity toward m1A, which accounted for 50%
of the total adenine product, similar to that seen for unpaired
adenines. In contrast, no statistically significant changes in
reactivity were observed upon binding of echinomycin to
dsAT-L. Thus, Hoogsteen bps shift the adenine DMS methyla-
tion patterns fromm3A to m1A.
Taken together, these results show that Hoogsteen A-T bps

increase the susceptibility of dsDNA to m1A damage, and the
Hoogsteen sites can be identified asm1A sites in theAlkB-coupled
primer extension stop assay at single nucleotide resolution.

Discussion

Our results show that dsDNA is particularly vulnerable to
damage when bps form the Hoogsteen conformation. For the
echinomycin-induced tandem A-T Hoogsteen bps, the sus-
ceptibility of adenine-N1 to methylation was only 10–40-fold
lower than unpaired adenine residues. The enhanced adenine-
N1 reactivity in Hoogsteen bps relative to Watson–Crick
observed in vitro using our model oligonucleotides may differ
in the intracellular environment, where the ionic strength is
higher and where the DNA is subject to supercoiling and tor-
sional stress. Further in vivo studies are necessary to quantify
the enhanced reactivity of adenine-N1 for Hoogsteen bps in
cells and to assess whether Hoogsteen bps provide alternative
states for damaging DNA in vivo.
Based on available crystal structures, solvent-exposed A-T

and G-C1 Hoogsteen bps can also be found in protein-DNA
complexes, such as the tumor suppressor protein p53 (31) and
the general transcription factor TBP (30, 71), which induce the
A-T or G-C1 Hoogsteen bps, respectively, as the dominant
conformation at specific sites (27, 28, 30, 31, 72–75) (Fig. 7).
Some of these Hoogsteen bps have been verified under solution
conditions (27, 75). Structure modeling also reveals that a hy-
pothetical A-T Hoogsteen bp forming in the context of the
nucleosome core particle (76) would also expose adenine-N1 to
solvent. Further studies are needed to investigate whether such
Hoogsteen bps in protein-DNA complexes (77, 78) are also vul-
nerable to Hoogsteen-mediated alkylation damage.
The primer extension approach presented in this work pro-

vides a method for robustly identifying adenine nucleotides in
an A-T Hoogsteen or unpaired conformation in protein-DNA
complexes in vitro under solution conditions that can other-
wise be difficult to visualize using other solution-state methods,

Figure 7. Solvent accessibility of purine-N1 in A-T and G-C Hoogsteen bps in crystal structures of DNA-protein and DNA-drug complexes. Shown are
the crystal structures of DNA-echinomycin complex (PDB code 1XVN) (59), DNA-p53 tumor suppressor protein complex (3IGL) (31), DNA-TATA box–binding
protein complex (1QN3) (30), DNA-dcm-Vsr endonuclease complex (1ODG) (72), DNA-MATa2 homeodomain complex (1K61) (28), DNA-TnpA transposase
complex (2A6O) (74), and nucleosome core particle (5AV8) (76). The surfaces of DNA and protein/drug are shown in gray and cyan, respectively. The adenine-
N1 for A-T Hoogsteen or guanine-N1 for G-C1 Hoogsteen is shown in red and highlighted in a red circle. In the nucleosome core particle structure (PDB code
5AV8), residue DA-18 at chain I was manually flipped to a syn conformation using PyMOL and then subjected to the AMBER MD package (91) for energy mini-
mization using AMBER ff99 force fields (92) as described previously (85).

Hoogsteen-mediated DNA damage

J. Biol. Chem. (2020) 295(47) 15933–15947 15941

 at D
uke U

niversity on D
ecem

ber 28, 2020
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


such as NMR (71). When combined with high-throughput
sequencing, this approach could potentially be extended to
map these structures genome-wide in vivo at single-nucleotide
resolution. In this regard, it is important to note that there have
been many failed attempts to detect Hoogsteen bps in DNA-
echinomycin complexes based on enhanced reactivity with a
variety of reagents (69, 79–81). However, none of these studies
employed DNA sequences that were independently verified to
contain Hoogsteen bps using techniques such as solution
NMR. In addition, some of the chemical reagents used did not
target sites that would be uniquely reactive in the Hoogsteen
conformation (69, 79, 80). One study (82) showed that binding
of echinomycin to DNA induced hyperreactivity to diethyl
pyrocarbonate both at the echinomycin-binding sites and at
a distal region containing alternating A-T bps. It was proposed
that the hyperreactivity could result from A-T Hoogsteen bps,
which would expose adenine-N3 in the major groove and
potentially cause enhanced reactivity to diethyl pyrocarbonate. It
remains plausible that the reactivity seen by Mendel and
Dervan (82) did arise in part from enhanced transient Hoogsteen
bps, especially in light of recent NMR studies showing enhanced
Hoogsteen breathing in anA-T–rich region in aDNA-echinomy-
cin complex (60). The DMS approach presented here could be
applied to confirm the existence of enhanced transient Hoogs-
teen bps in these sequence contexts as well.
The high reactivity of adenine-N1 in the A-T Hoogsteen bp

also has important implications for a growing number of stud-
ies that employ DMS to probe the secondary structure of RNA
in vitro and in vivo (36, 68, 83, 84). Whereas it is typically
assumed that high DMS reactivity corresponds to unpaired nu-
cleotides, in RNA, Hoogsteen G-A and G-G mismatches with
syn purine bases are common (71, 85) and could be an addi-
tional source of high DMS reactivity in addition to unpaired
nucleotides.
Whereas we have focused on A-T Hoogsteen bps, G-C1

Hoogsteen bps could similarly provide mechanisms for inflict-
ing damage to the Watson–Crick face of the guanosine base to
produce many known forms of damage (Fig. 1A), including
m1G, which occurs in vivo albeit in lower abundance than m1A
and is highly mutagenic (18). It is interesting to note that the G-
C1 Hoogsteen bp also occurs with ;10-fold lower abundance
relative to the A-T Hoogsteen bp (24, 25). Whereas we have
focused on alkylation of purine bases, Hoogsteen bps could also
play roles in other forms of damage. For example, Hoogsteen
bps have already been proposed to grant formaldehyde access
to neighboring G-C Watson–Crick bps, resulting in the
hydroxymethylation of the cytosine amino nitrogen in dsDNA
(86). Beyond Hoogsteen bps in dsDNA, other non-B DNA
motifs have also been linked to mutagenesis that could expose
Watson–Crick faces of nucleotide bases (87). Further studies
are needed to understand how sequence-specific DNA dynam-
ics may contribute to damage.
Finally, it has been known for many decades that in vitro, the

Watson–Crick faces of nucleobases in dsDNA are accessible to
damage by alkylating reagents (9, 13, 14, 20). Yet surprisingly,
the extent of reactivity relative to ssDNAhas not been quantita-
tively measured. Our results suggest that dsDNA only confers
;130-fold protection relative to unpaired nucleotides in a

bulge. The origin of the residual reactivity is unknown and
could reflect formation of reactive transient Hoogsteen bps or
some other unidentified conformational states. It could also
arise as secondary methylation of dsDNA with the doubly
methylated species falling below detection limits of MALDI. It
could be that damage to solvent-exposed Hoogsteen faces of
nucleobases to produce modifications such as m7G could also
increase the damage susceptibility of the Watson–Crick faces
of nearby A-T bps, by promoting either Hoogsteen or other
conformations. Further studies are needed to understand the
origins of this dsDNA reactivity.
In conclusion, our results indicate that Watson–Crick faces

of purine nucleobases in dsDNA are accessible to methylation
by DMS and that Hoogsteen conformations increase this reac-
tivity further. The unique reactivity of adenine-N1 in Hoogs-
teen and unpaired conformations provides a method to detect
these conformations in vitro and possibly in vivo.

Experimental procedures

Reagents

DMS, b-ME, echinomycin, m3A, and m7G nucleobases were
purchased from Sigma–Aldrich. m1A mAb (mouse) was pur-
chased from MBL. The m1A nucleobase was purchased from
Acros Organics. Horseradish peroxidase–conjugated second-
ary antibody (anti-mouse IgG) was purchased from Thermo
Fisher Scientific. The AlkB enzyme was a gift from Dr. Patrick
O’Brien (University of Michigan). Unmodified DNA oligonu-
cleotides were purchased from IDT with HPLC purification for
primer extension assays and using standard desalting for other
experiments. 59-IR700–labeled DNA oligonucleotides were
purchased from IDT with HPLC purification. DNA oligonu-
cleotides containing m1A or m6A were purchased from Yale
Keck Biotechnology.

DNA sample preparation

Duplex or hairpin dsDNA samples were prepared by dissolv-
ing oligonucleotides (1 mM for duplex, 20–100 mM for hairpin)
in annealing buffer (15mM sodium phosphate, 25mMNaCl, 0.1
mM EDTA, pH 6.8). For nonpalindromic duplexes used in the
primer extension assay, 13 template strand was mixed with
1.53 complementary strand to eliminate any residual ss tem-
plate strand. Samples were then heated at 95 °C for 10 min, fol-
lowed by slowly cooling to room temperature for duplexes and
rapid cooling on ice for hairpins. Samples were then buffer-
exchanged at least three times using a centrifugal concentrator
(EMD Millipore, 3-kDa cutoff) into the annealing buffer. Sam-
ple purity was then assessed based on the absorption ratios
(A260/A230 and A260/A280) measured on a NanoDrop 2000C
spectrophotometer (Thermo Fisher Scientific). The concentra-
tion of oligonucleotides was quantified using a Qubit fluorome-
ter (high-sensitivity 1xdsDNA kit). DNA-echinomycin com-
plexes were prepared by mixing the DNA in annealing buffer
with 103 and 33 echinomycin dissolved in methanol for long
(dsTA-L and dsAT-L) and short (hpTA, hpAT, dsAT, dsTA, E24TA,
and E24TA) oligonucleotides, respectively, maintaining the
annealing buffer/MeOH ratio at 2:1 (v/v). The complex solu-
tions were incubated at room temperature for 45 min, followed
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by slow solvent evaporation under an air stream (58). The dried
samples were redissolved in water, ensuring that the final salt
concentration was identical to the annealing buffer.

UV thermal denaturation

UV thermal denaturation experiments were performed on a
PerkinElmer Lambda 25 UV/VIS spectrometer with an RTP 6
Peltier Temperature Programmer and a PCB 1500 Water Pelt-
ier System. DNA oligonucleotide stocks prepared in annealing
buffer were diluted in annealing buffer to generate 3 mM 400-ml
solutions. The samples were denatured at 1 °C/min with the ab-
sorbance at 260 nm (A260) being recorded every 0.5 °C. Three
independent readings were recorded for each sample. Melting
temperature (Tm) and enthalpy change (DH0) for the melting
transition were obtained by fitting the absorbance data to Equa-
tions 1 and 2 using an in-houseMathematica script:

A260 ¼ ðmds 3T 1 bdsÞ3 f 1 ðmss 3T 1 bssÞ3 ð12 f Þ
(Eq. 1)

fhairpin ¼ e
1

Tm
�1

Tð ÞDH0
R

11 e
1

Tm
2 1

Tð ÞDH0
R

(Eq. 2)

where mds and bds andmss and bss are pairs of coefficients rep-
resenting the temperature dependence of the extinction coef-
ficients of the hairpin and single strand, respectively; T is the
temperature (units Kelvin); f is the fraction of the folded hair-
pin at a given temperature; Tm is the melting temperature
(units Kelvin); DH0 is the enthalpy of the melting transition
(units kcal/mol); and R is the universal gas constant (units
kcal/K·mol). The entropy (DS0) and free energy (DG0) changes
were computed from Tm and DH0 using Equations 3 and 4.

DS0 ¼ DH0

Tm
(Eq. 3)

DG0 ¼ DH0 � TDS0 (Eq. 4)

DMS treatment

DNA samples (1000 and 100 pmol for the dot-blot and
primer extension assays, respectively) in annealing buffer were
treated with DMS (75 and 150 mM for the dot-blot and primer
extension assays, respectively) at room temperature for 5 or 15
min. A 23 volume of 66% ice-cold b-ME in DNA-annealing
buffer was added to quench the reaction. The DNA was imme-
diately purified using a DNA cleanup column (the Monarch
PCR&DNA cleanup kit fromNew England Biolabs) and eluted
with water. The samples were stored at 220 °C until required
for the next step in the protocol. Single-hit kinetics with respect
to the DMS reaction was verified usingMS. Lack of overmethy-
lation under the DMS treatment conditions used was further
confirmed by monitoring the bands corresponding to the full-
length product in the primer extension stop assays, which were
much stronger than those of the truncated products (Fig. S6).

MALDI–TOF–MS

DMS-treated DNA oligonucleotides were desalted using a
C18 Ziptip (Millipore). Briefly, the tip was primed with 50:50
H2O/MeCN with 0.1% TFA and rinsed with 0.1% TFA in H2O.
1 ml of sample was then loaded on the tip and desalted with
3 3 1 ml of 100 mM ammonium acetate. The procedure was
repeated two more times, and the DNA oligonucleotide was
finally eluted in 10:90 H2O/MeCNwith 0.1% TFA. TheMALDI
matrix consisted of 30 mg/ml 3-hydroxypicolinic acid and 10
mg/ml diammonium citrate dissolved in 50:50 water/acetoni-
trile with 0.1% TFA. 1 ml of matrix was first dried on the pol-
ished steel plate, and then 1 ml of the desalted DNA oligonu-
cleotide was dried over the top. Mass spectra were obtained
using a Bruker Autoflex Speed LRF MALDI-TOF mass spec-
trometer equipped with a Nd:YAG laser (355 nm). Samples
were analyzed in positive ion reflector mode using insulin/apo-
myoglobin as external calibration standards. Each spectrum
was obtained using 500–1500 laser shots. The MALDI data
of untreated hpTA and hpAT showed peaks corresponding to
nucleobase losses that likely occur duringMALDI sample prep-
aration and/or desorption and ionization (88, 89), as the number
of resonances in the [13C,1H] 2D HSQC NMR spectrum (Fig.
S3) is consistent with the base composition of the DNAduplex.

AlkB repair

DMS-treated DNA samples (;300 pmol, 10 ml) were added
to (90 ml of) AlkB reaction buffer (25 mM HEPES, 100 mM

NaCl, 2 mM sodium ascorbate, 1 mM 2-oxoglutarate, 40 mM

(NH4)2Fe(SO4)2, 1 mM tris(2-carboxyethyl)phosphine, and 0.1
mg/ml BSA, pH 7.3). AlkB enzyme was then added to a final
concentration of 2 mM. The reaction was allowed to proceed at
37 °C for 2 h. Samples were then purified using the DNA
cleanup column kit (the Monarch PCR & DNA cleanup kit
fromNew England Biolabs). The specificity of AlkB repair reac-
tion was confirmed using an inactive AlkB control reaction in
which Fe21, ascorbate, and 2-oxoglutarate co-factors required
for the demethylation reaction were not added (Fig. S2).

Dimroth reaction

DMS-treated DNA samples (10 ml) were added to 1 ml of 0.1
M Na2CO3/NaHCO3 buffer (pH 10.2) and incubated at 65 °C
for 3 h. Samples were then purified using the DNA cleanup col-
umn kit (the Monarch PCR&DNA cleanup kit fromNew Eng-
land Biolabs).

Dot-blot assay

A chemically synthesized oligonucleotide containing a single
m1A was used to calibrate the m1A concentration range over
which the m1A antibody signal intensity varies linearly with
m1A concentration (Fig. S7). Based on this m1A standard curve,
for the subsequent dot-blot assays, 100 pmol of DNA samples
were blotted on a positively charged nylonmembrane (Amersham
Biosciences Hybond-N1, GE Healthcare). The DNA was then
UV-cross-linked to the membrane (254 nm, 15 min). The mem-
brane was incubated in 0.03% methylene blue (in 0.5 M acetate)
for 30 min, followed by a brief wash with PBST buffer (0.1%
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Tween 20 in 13 PBS, pH 7.4) and was then imaged to quantify
the amount of DNA loaded on the membrane (loading controls).
Methylene blue destaining was performed by washing with etha-
nol for 5 min. The membrane was blocked with 5% nonfat dry
milk (in PBST buffer) at room temperature for 1 h and then incu-
bated with anti-m1AmAb (1:5000 dilution in PBST buffer) at 4 °C
overnight followed by three 10-min PBSTwashes. Themembrane
was then incubated with horseradish peroxidase–conjugated sec-
ondary antibody (1:2500 dilution in PBST buffer) at room temper-
ature for 1 h followed by three 10-min PBST washes. The mem-
brane was developed using enhanced chemiluminescent substrate
(GEHealthcare) on Bio-RadChemi-Doc imager. The signal inten-
sity was quantified using Image Laboratory software. For nucleo-
base-based competition assays, the anti-m1A mAb (1:5000 in
PBST buffer) was premixed with a series of concentrations of
nucleobases (m1A, m3A, or m7G) prior to incubation with the
membrane containingm1A-incorporated dsDNA.

Primer extension stop assay

Primer extension reactions were performed by mixing
DNA oligonucleotide samples (0.1 mM 3 2 ml in H2O) with
the 59-IR700 labeled primer (59-ATCAGAATCCCGGTGCC-
GAGGC-39) (1.5 mM3 2.5ml in H2O) followed by the addition
of 4.5 ml of NEBNext Ultra II Pol master mix (New England
Biolabs). The reaction mixture was denatured at 98 °C for 1 min
and then annealed and extended at 72 °C for 6 min and finally
cooled to room temperature in a PCR machine (Eppendorf AG).
8.5 ml of stop solution (0.05% orange G and 20 mM EDTA in
formamide) was then added. Samples were denatured at 98 °C for
3 min and loaded immediately (7.5ml) on a denaturing polyacryl-
amide gel (10% polyacrylamine, 8 M urea). The gel was run at
45 °C and 45 watts for 50 min and visualized using the LI-COR
Odyssey Clx imaging system at 700 nm.

Gel quantification

The band intensities were quantified using Image Studio
software (LI-COR). Briefly, the “Draw Rectangle” mode was
used to select bands. Rectangles around the bands of interest
were drawn manually, and the band intensities were quantified
using the software. The size of the rectangle was chosen to be
just sufficiently large to completely encompass the band. To
allow comparison across different samples, a similar sized rec-
tangle was used to quantify bands on the same gel. Fig. S6C
shows an example for the gel quantification.

Sanger sequencing

A Sanger sequencing assay was performed using the Seque-
nase 2.0 DNA Sanger sequencing kit (Thermo Fisher Scien-
tific). The assay was performed following the protocol provided
by the sequencing kit. Briefly, to prepare the annealing mixture,
the template strand (5 mM 3 1 ml in water) of one single strand
of dsTA-L DNA (59-GCAACATGCGTACGCACTGTCTTC-
CAGGCCTCGGCACCGGGATTCTGAT-3') was combined
with the same IR700-labeled primer (5 mM 3 1 ml in water)
used in the primer extension assay and 6 ml of double-distilled
H2O and 2ml of 53 Seq buffer (provided in the kit). The anneal-
ing mixture (10 ml in total) was then heated at 70 °C for 5 min,

annealed at room temperature for 5 min, and then chilled on ice
for 1min. 1.5ml ofMn21 buffer (provided in the kit), 1ml of DTT
solution (provided in the kit), and 1 ml of water were then added
to the annealing mixture. 3 ml of annealing mixture was then
added to each of the four termination tubes containing 2.5 ml of
ddA, ddC, ddG, and ddT, respectively (provided in the kit. Note
that these four tubes were prewarmed at 37 °C for 5 min prior to
the addition of the annealingmixture). 0.5ml of prediluted Seque-
nase 2.0 enzyme (the enzyme and the dilution protocol are pro-
vided in the kit) was quickly added to each termination tube. Ter-
mination tubes were then incubated at 37 °C for 3 min. 4 ml of
stop solution (95% formamide, 20 mM EDTA and 0.05% orange
G) was then added to each tube, and the tubes were heated at
95 °C for 5 min. 3.5ml of sample from each tube was immediately
loaded to the 10% polyacrylamide denaturing gel.

NMR experiments

One-dimensional and 2D NMR spectra were collected on a
700-MHz Bruker Avance III spectrometer equipped with a tri-
ple-resonance HCN cryogenic probe. Data were processed and
analyzed with NMRpipe (90) and SPARKY (T. D. Goddard and
D. G. Kneller, SPARKY 3, University of California, San Fran-
cisco), respectively.

Data availability

All data presented are available upon request from Hashim
M. Al-Hashimi (hashim.al.hashimi@duke.edu).
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Supporting Figures 
 

 
Figure S1. Matrix assisted laser desorption and ionization (MALDI) spectra of DMS 
treated samples showing single-hit and double-hit kinetics. (A, C, F) The MALDI 

spectra of untreated duplexes (hpbulge, hpTA and hpAT) (MW= 6100 amu).  (B, D, G) MALDI 

spectra of DMS-treated free DNA duplexes.  (E, H) MALDI spectra of DMS-treated DNA-

echinomycin complexes.  (B, D, E, G, H) 75mM DMS was used and the reaction was 

performed for 5 min (blue trace) or 15 min (red trace).  Peaks corresponding to single and 

double methylation are marked with * and **, respectively. 
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Figure S2. m1A specific damage rescue coupled DMS dot-blot assay for m1A 
detection.  Shown are the DNA sequences and the corresponding raw dot-blot data for 

15 min 75 mM DMS treatment along with their respective methylene blue loading controls 

(shaded grey), with and without the m1A rescue experiments (AlkB repair and Dimroth 

reaction).  The unpaired adenines in the bulge are marked in red.  For the inactive AlkB 

control, Fe2+, sodium ascorbate and 2-oxoglutarate required for the repair activity (10) 

were not added. 
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Figure S3. NMR experiments verifying echinomycin binding.  

Overlay comparing the aromatic region of the 2D [13C, 1H] HSQC NMR spectra of free DNA 

(shown in red) and echinomycin bound DNA (shown in purple) used in the dot-blot assay. The 

four spectra correspond to the four DNA sequences (hpTA, hpAT, dsTA, dsAT). The large chemical 

shift perturbations (comparing red and purple resonances) upon echinomycin binding observed 

in 2D HSQC spectra indicate formation of DNA-echinomycin complexes, in agreement with prior 

studies(60).   
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Figure S4. DMS reaction replicates for dot-blot assay in various sequence contexts. 
(A, B, C) The 3 sets of DNA constructs and dot-blot raw data for 3 independent DMS 

reaction (75mM, 15 min) replicates.  The CG echinomycin binding sites are underlined. 

The unpaired adenine in the bulge and the A-T bps that convert into the Hoogsteen 

conformation upon echinomycin binding are shown in red.  Shown are dot-blots of free 

and echinomycin bound DNA after DMS treatment pre- or post-AlkB repair or Dimroth 

reaction, along with their respective methylene blue loading controls (in grey). 
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Figure S5. 5 min DMS reaction replicates for dot-blot assay.  The DNA constructs 

and dot-blot raw data for 3 independent DMS reaction (75mM, 5 min) replicates.  The CG 

echinomycin binding sites are underlined.  The unpaired adenine in the bulge and the A-

T bps that convert into the Hoogsteen conformation upon echinomycin binding are shown 

in red.  Shown are dot-blots of free and echinomycin bound DNA after DMS treatment 

pre- or post-AlkB repair or Dimroth reaction.  
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Figure S6. Primer extension stop assay on DMS-treated free and echinomycin 

bound DNA. (A) DNA oligonucleotides used in the primer extension assay after DMS 

treatment and representative 10% urea polyacrylamide gels showing the products of 

primer extension for DMS-treated free and echinomycin bound DNA with and without AlkB 

repair. The CG echinomycin binding site is underlined. The unpaired adenine in the bulge 

and the A-T bps that convert into the Hoogsteen conformation upon echinomycin binding 

are shown in red. Bands corresponding to adenine of interest are highlighted with 

rectangles. (B) Identification of the site of adenine of interest using a 37mer DNA length 

marker and Sanger sequencing. The 37mer length marker is an IR700-labeled DNA, 

which contains the same sequence and length as the truncated product when the primer 

extension stops right before the adenine of interest (the adenine that forms Hoogsteen 

upon drug binding). The red box highlights the site of polymerase stops induced by the 

methylation of the adenine of interest in the DMS-treated dsTA-L sample identified by the 

length marker. Sanger sequencing was run on untreated ssDNA (dsTA-L) template (see 

Methods). The blue box encloses the Sanger sequencing lane for the truncation product 

corresponding to polymerase stop right before the adenine of interest . The nucleotide at 

the polymerase stop site is identified as cytosine. (C) An example showing quantification 

of band intensities using Image Studio software (See Methods for details). The gel shown 

in panel A was inverted for quantification. The band at the adenine of interest and the 

band corresponding to the full-length product are quantified in each lane (blue rectangles).  
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Figure S7. m1A antibody calibration curve. Shown are the m1A (marked in red) 

containing DNA oligonucleotide used for antibody calibration and the calibration curve. 

The indicated amount of DNA was incubated with the antibody and the signal intensity 

quantified. The data is shown as an average of 3 independent blotting experiments with 

error bars representing the standard deviation.  
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Sequence Tm  
(K) 

∆H0 
(kcal/mol) 

∆S0  
(cal/mol/K) 

∆G025 
(kcal/mol) 

[ss]25 
(%) 

E24TA 344.55 ± 
0.20 
 

-62.37 ± 
1.47 
 

-181.01 ± 
4.36 

-8.40 ± 
0.17 

(6.81 ± 
1.92) 10-5 

E24AT 345 ±  
0.32 
 

-73.58 ± 
1.54 

-213.29 ± 
4.36 

-9.99 ± 
0.25 

(4.70 ±  
1.79) 10-6 

 
Table S1: Thermodynamic parameters for annealing of E24TA and E24AT DNA hairpins 
obtained using UV thermal denaturation. ∆G025 represents the ∆G0 for duplex annealing 
at 25 °C  and was used to compute the abundance of the single-stranded species 
([ss]25) at 25 °C .  
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